Recycling Plastic Waste with a 3D Printer Filament Extruder

Ian Rasmussen, Alberto Ng, Jeremy Anderson, Brandon Jafari, Rob Younes, Ben Bartol Grand Challenges | Schmid College of Science and Technology | Chapman University

Introduction

- The goal of the project is to create reusable plastic filament for 3D printers.
- The ocean is filled with millions of metric tons of plastic, called the Plastic Reef (PlasticsEurope, 2018).
- Ocean plastic is harder to work with due to saline levels and sunlight it is exposed to.
- With 3D printing on the rise, we intend to utilize the neglected waste.
- The future goal would be to navigate using ocean plastic as an input in the future.

Acknowledgments

- Matter Hackers
- Ariel Gutierrez
- Dr. Aaron Harrison

Approach

- First, we must order the parts listed below, and assemble like so on the extruder prototype below
- Must break down plastics into pellots
- To reach the end goal we need to first test normal, unexposed recyclables and process those into filaments with the use of an extruder.
- Must make sure temperatures correspond with specific plastic
- Then once we have sufficient data, we move onto the step of treating ocean plastic in a way that allows its recycled quality to be a usable standard for printing.
- To create a cost effective way of creating filament, then having to buy expensive filament from stores
- Will use recyclable waste.

Schematic and Budget

Description	Material	Details	Quantity	Remarks	Price (\$)
Strip	Steel	30x30MM	10cm		1.29
Round bar	Steel	30MM	5.5 cm	Accurate and smooth from the inside	2.59
Round bar	Steel	25MM	22 cm		3.88
Square tube	Steel	30X30X3M M	800 cm		45.28
Tube	Steel	34X26X4M M	53 cm	Make sure if fits the drill	1.29
Angle profile	Steel	30X30X3m m	32		2.59
Sheet metal	Steel	1mm			19.40
Motor	2		1	Around 70 RPM	38.81
Bearing	-		1	UCFL 204	6.47
Drill	-	26x600 MM	1	Make sure if fits the tube	38.81
PID Controller	2	0-400 Degree	2x		28.18
SSR	-	2-24 V	2x		^ Above item comes with ssr
Thermocouple	-	Type K	2x		9.99
Bandheater	metal	35X45MM	3x		17.04
Bandheater	metal	40X45MM	1x		21.99
Power Switch	-	220 V	1x		0.37
Led Indicator	-	220V	1x		5.48
Power cord	62		5 M		3.88
	12	200	No.	TOTAL	246.34

Figure 2. Schematic of Extruder

Conclusions

- 3D printing is a very new and evolving field of science
- Very feasible way to reduce waste production globally.
- Should this work as intended, we will look towards avenues of simplifying the process and developing large scale extruders for ocean relief and at home filament extruding.

References

- PlasticsEurope. Plastics the Facts 2018. 2018.
- Exconde MKJE, Co JAA, Manapat JZ, Magdaluyo ER. 2019. Materials Selection of 3D Printing Filament and Utilization of Recycled Polyethylene Terephthalate (PET) in a Redesigned Breadboard.
- MatterHackers. Clear Translucent MH Build Series PETG Filament - 1.75mm (1kg)
- Mohammed MI, Mohan M, Das A, D. Johnson M, Singh Badwal P, McLean D, Gibson I. 2017. A low carbon footprint approach to the reconstitution of plastics into 3D-printer filament for enhanced waste reduction.
- Garmulewicz A, Holweg M, Veldhuis H, Yang A. 2018. Disruptive Technology as an Enabler of the Circular Economy: What Potential Does 3D Printing Hold? California Management Review.

Figure 1. Budget of Extruder