

Abstract

- Our Challenge: Harness AI for Safety Purposes
- **Bettering Society with**
- Safer Roads:
- Reducing the number of vehicles that run red lights (reducing red light accidents)
- Safely and accurately determine if it is safe to "make a yellow light"

Figure 1: Visual representation of how our model would work

• Progress:

- Built a printed miniature vehicle using 3D printed parts, a raspberry pie, motors and sensors
- Used computer vision to detect colors
- Accessed pre-trained data set

Figure 2: The 5 levels of Automation a based with an indication of where our model would fall on this spectrum [1].

Introduction

Background

- Autonomous cars are capable of sensing its environment and operating without human involvement
- Reducing human error -> reducing accidents
- Using sensors, actuators, complex algorithm, machine learning systems and powerful processors
- Increasing safety, productivity, cost, efficiency, and accessibility

• Our solution

- Stop light Recognition demonstrated on a small scale model of a car
- Able to recognize stop lights in its field of view, identify which color light is currently activated and start or stop accordingly

Stop Light Al Andrew Dillon, Kentaro Matsuo, Lucas Gaudet, Samuel Bernsen

- Planning Stage • UML Diagrams and Flowcharts
- Designing and sourcing parts to 3D print
- Research machine learning tools

Figure 3, left: Some of the software we used for the project. Figure 4 right: UML Flowchart detailing the steps our car needs to take when encountering a stop light

Detects

stoplight

Build Stage

- 3D printed parts to attach some the hardware elements to better serve our needs
- Built and programed stoplight to run tests with
- Printing and resizing 3D parts
- Programming, wiring, and soldering the stoplight
- Attaching motor driver to raspberry pi Soldering motors to 4 output pins
- Driving motors with python library
- Integrating motor driver program with machine learning algorithm

Citations

[1] Captcha. Osapublishing.org. [accessed 2022] Apr 13].

[2]Jeff Hecht. (2018). LiDAR for Self Driving Cars. Optics and Photonics News.

[3] Media U, Events. 2019b Jan 23. How anomaly detection is helping OEMs make autonomous vehicles safer. Automotive Testing Technology International. [accessed 2022 May 3].

[4] Baidac I. 2020 Nov 10. Sensor Fusion: a prerequisite for autonomous driving. The Autonomous. [accessed 2022 May 4].

[5]Amazon.com. [accessed 2022 May 9].

Figure 5 above: Photo of the Time of Flight sensor

Figure 6: Zoomed in image showing how the stop light is labeled.

Set-Backs

- Car was damaged, snapping much of the original chassis and frame
- 3D printed our own parts to replace what was broken and modify the original model to better fit our needs
- Ordered new ToF sensor • Not needed in final implementation
- Broken RGB camera
- Ordered new camera to replace it Package manager needed for
- PyTorch
- Difficulties downloading it to school computers due to not having the correct privileges. We were able to download it to our own laptops to begin work

Conclusion & Next

Stepsing the stoplight recognition AI and integrating motor driver.py with this program

- Train the AI on a large data set • Ensure that it behaves properly in practice
- Integrate pre-trained model with our own data set
- Test our model in a physical environment with our model stoplight

Figure 7 above: Raspberry Pi and DC motor for wheels

Figure 8 above: A photo of our replacement camera.