The Quantum Pigeonhole Principle: Can three pigeons be in two pigeonholes with no two pigeons in the same hole? Researchers from Chapman University’s Institute for Quantum Studies show how quantum mechanics violates one of the fundamental principles of nature
Research published this month in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) introduced a new quantum phenomenon which the authors called the “quantum pigeonhole principle.” Prior to this breakthrough, the pigeonhole principle was a basic tenet of conventional wisdom. It states that if you put three pigeons in two pigeonholes then at least two of the pigeons must end up in the same hole. It is an obvious yet fundamental principle of nature as it captures the very essence of counting. The research, conducted by members of Chapman University’s Institute for Quantum Studies (IQS), violates this principle. The study demonstrates how to put an arbitrarily large number of particles in two boxes without any two particles ending up in the same box.
“This discovery points to a very interesting structure of quantum mechanics that was hitherto unnoticed,” said Yakir Aharonov, Ph.D., and co-director of Chapman’s IQS. “This now requires us to revisit some of the most basic notions of nature.”
The paper, called Quantum violation of the pigeonhole principle and the nature of quantum correlations, discusses several possible experiments which explore implications for the nature of interactions between particles. The paper also introduces a host of additional new findings that the researchers discovered concerning related quantum effects. The paper also calls into question some of the most fundamental notions including that of separability and correlations.
“It is still very early to say what the full implications of this research are,” said Jeff Tollasken, Ph.D., co-author of the PNAS paper and co-director of IQS. “But we feel one should expect them to be major because we are dealing with such fundamental concepts.”
For example: the laws governing the quantum world suggest that things can be in many different places at the same time. So a single particle can be in both boxes at the same time — but only when you’re not “looking.” Once you look, and observe the particle, it will be forced to be in either one box or the other.
“But if your only tool is a hammer, then you tend to treat everything as if it were a nail,” says Tollaksen. “The problem was that the ‘hammer-type’ measurements usually are not the most useful in figuring out how the quantum world links the future with the present in subtle and significant ways.”
Aharonov and his team have worked for two decades on new types of gentle “weak measurements,” which can see these linkages — “akin to tapping something softly with your finger rather than smashing it with that hammer, which forces each pigeon to be in a single box,” Tollaksen says.
All this weirdness has revolutionary implications for our understanding of the most exotic aspect of nature: non-locality — the theory that particles separated by huge distances, even at opposite ends of the universe, are connected and can affect each other’s behavior.
“Non-locality is regarded as the most profound discovery of science and is the resource for the future of technology.” says Tollaksen.
Experiments have already been performed confirming some of the predictions made in the PNAS paper. The experimental results were published in December in the journal Physical Review A by Dr. Tollaksen and collaborator Prof. Yuji Hasegawa at the Vienna University of Technology.
Researchers on the PNAS paper included: Dr. Aharonov, Daniele Struppa, Ph.D., Dr. Tollaksen, Ph.D., Sandu Popescu, Ph.D., Irene Sabadini, Ph.D., and Fabrizio Colombo, Ph.D., all members of Chapman University’s IQS. More information about IQS can be found at quantum.chapman.edu.
The paper was published January 4, 2016, at http://www.pnas.org/
Consistently ranked among the top universities in the West, Chapman University provides a uniquely personalized and interdisciplinary educational experience to highly qualified students. Our programs encourage innovation, creativity and collaboration, and focus on developing global citizen-leaders who are distinctively prepared to improve their community and their world. Visit www.chapman.edu
Follow us on Facebook at: Chapman University Facebook
On Twitter at: @ChapmanU
On YouTube at: Chapman University YouTube Channel
###
Categories
Recent Posts
- ANNETTE BENING, ED ASNER, AND GARY COLE JOIN CAST CRITICALLY ACCLAIMED PLAY BRINGS THE HUMAN EXPERIENCE OF WARFARE TO LIFE
- DISNEY EXECUTIVES AND OTHER ORANGE COUNTY LEADERS JOIN CHAPMAN UNIVERSITY GOVERNING BOARDS
- Chapman University’s Office of the Provost and Musco Center Presents Provost’s Arts & Lecture Series
- General H. R. McMaster visits to commemorate partnership between Chapman University and Richard Nixon Foundation
- More Category 5 Hurricanes Forecasted by Scientists
Archives
- October 2018
- September 2018
- August 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011